

FUNDING DYNAMIC, SUSTAINABLE LAND USE.

What are we offering to landowners?

Tāmata Hauhā provides all the development funding, plants, operations, insurances, trading and ongoing compliance management in entering the ETS. Fencing is typically excluded or done by negotiation.

We work with the landowners to co-design sustainable forestry solutions. Solutions that can include agroforestry/silvipasture, production, permanent, as well as transitional/integrated forestry outcomes.

Landowners typically receive 50% of the profits for a 16-20-year period and then 100% after that.

Our partnership offers the long-term benefits of planting trees that will improve biodiversity at no cost to the landowner.

What types of afforestation do we fund?

Permanent forestry – we favour a mixed species approach over just pine, incorporating high-value food, fibre and nutraceutical native species under the carbon canopy, as well as agroforestry, apiculture, riparian and erosion stabilisation.

Permanent/transitional/integrated forestry – this is where an exotic baseline is managed to transition long-term towards native forestry.

Production forestry – in this scenario landowners choose a single rotation and once harvested use the proceeds to establish a secondary rotation of production or native forestry.

Eligibility requirements of the ETS

The land must be:

- At least 1 hectare with an average width of at least 30 meters.
- ✤ Not in forest cover as at 31 December 1989.
- The forest must have at least 30% canopy ground cover and be at least 5m tall at maturity.

Forest land that does not meet the criteria defined above is not considered forest under the NZ ETS. Examples include:

- Narrow shelterbelts
- ✤ Gorse or Broom
- Horticultural tree species
- Scattered tree species are unlikely to ever reach 30% canopy ground cover.

Pasture-forestry interaction for animal welfare benefits, soil management, microclimate modification, carbon sequestration and nutrient recycling. Creating "and-and" outcomes!

Pasture-forestry interaction for animal welfare benefits, soil management, microclimate modification, carbon sequestration and nutrient recycling. Creating "and-and" outcomes!

Pasture-forestry interaction for animal welfare benefits, soil management, microclimate modification, carbon sequestration and nutrient recycling. Creating "and-and" outcomes!

Permanent mixed species carbon forestry Utilising best practice permanent mixed species carbon forestry in the New Zealand Emissions Trading Scheme as an economic and environmental enabler.

Understanding high-value understory supply chains Expanding landowner opportunities to layer-in new revenue streams, trialing new investment opportunities from high-value food, fibre and nutraceutical taonga species.

Understanding Transitional Forestry

Such forests are examples that demonstrate the value of biodiversity whilst ensuring long-term carbon storage above and below ground, as an economic enabler that provides for climate resilience and recreational use.

Transitional Forestry Whakaaro:

RANGATIRA RAKAU

(())

Larger forest species are incorporated for long-term conversion to native forestry

TAONGA SPECIES

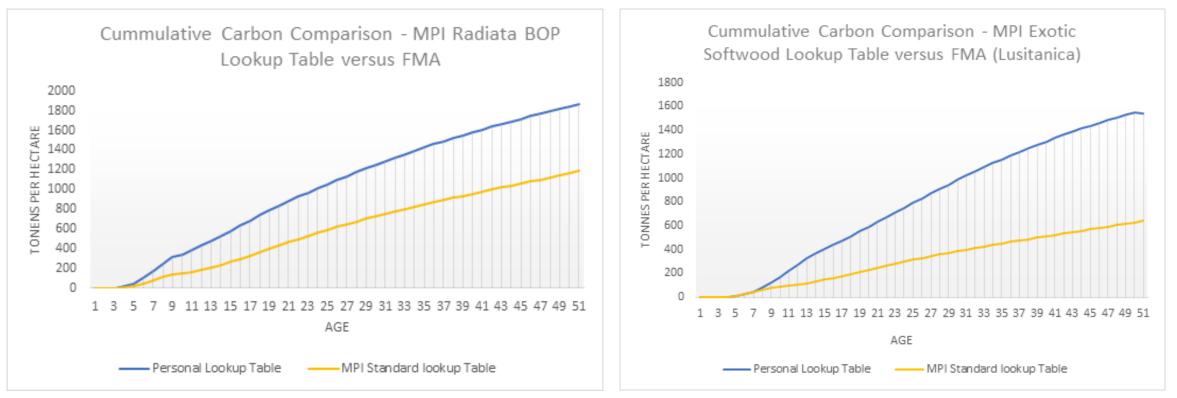
High value transition natives are integrated to restore indigenous habitat

MANUHIRI SPECIES

Selective exotic species with ecological and economic qualities are introduced

Species selection: Projected Landowner Returns Per Ha (EBIT).

Year	Radiata Pine	Hardwoods	Softwoods	Pine Returns	Income
	Annual Return	Annual Return	Annual Return	Initial 10 Years	\$8,410
1	\$18	\$4	\$7	Year 11-20	\$16,305
2	\$92	\$104	\$29	Year 21-30	\$35,549
3	\$225	\$364	\$73	Year 31-40	\$34,927
4	\$955	\$780	\$334	Year 41-50	\$43,264
5	\$1,442	\$1,099	\$530	Total Revenue	\$138,455
6	\$1,669	\$1,352	\$734	Hardwood Returns	Income
7	\$1,703	\$1,537	\$709	Initial 10 Years	\$9,913
8	\$1,241	\$1,568	\$563	Year 11-20	\$12,725
9	\$506	\$1,558	\$410	Year 21-30	\$17,928
10	\$559	\$1,548	\$335	Year 31-40	
11	\$1,009	\$1,493	\$469		\$10,880
12	\$1,209	\$1,480	\$522	Year 41-50	\$11,847
13	\$1,415	\$1,376	\$621	Total Revenue	\$63,293
14	\$1,583	\$1,358	\$679	Softwood Returns	Income
15	\$1,710	\$1,293	\$739	Initial 10 Years	\$3,724
16	\$1,793	\$1,225	\$801	Year 11-20	\$7,248
17	\$1,878	\$1,153	\$817	Year 21-30	\$17,118
18	\$1,865	\$1,176	\$833	Year 31-40	\$17,164
19	\$1,902	\$1,100	\$900	Year 41-50	\$19,817
20	\$1,940	\$1,071	\$867	Total Revenue	\$65,072


Age	RADIATA PINE	RADIATA PINE	EXOTIC HARDWOODS			EXOTIC SOFTWOODS	NATIVE FORESTRY	NATIVE FORESTRY
(Years)	Carbon Sequestered	Annual Sequestration	Carbon Sequestered	Annual Sequestration	Carbon Sequestered	Annual Sequestration	Carbon Sequestered	Annual Sequestration
(reals)	(t/ha)	(t)	(t/ha)	(t)	(t/ha)	(t)	(t/ha)	(t)
0	0							
1	0.5	0.5	0.1	0.1	0.2	0.2	0.6	0.6
2	3	2.5	3	2.9	1	0.8	1.2	0.6
3	9	6	13	10	3	2	2.5	1.3
4	34	25	34	21	12	9	4.6	2.1
5	71	37	63	29	26	14	7.8	3.2
6	113	42	98	35	45	19	12.1	4.3
7	155	42	137	39	63	18	17.5	5.4
8	185	30	176	39	77	14	24	6.5
9	197	12	214	38	87	10	31.6	7.6
10	210	13	251	37	95	8	40.2	8.6
11	233	23	286	35	106	11	49.8	9.6
12	260	27	320	34	118	12	60.3	10.5
13	291	31	351	31	132	14	71.5	11.2
14	325	34	381	30	147	15	83.3	11.8
15	361	36	409	28	163	16	95.5	12.2
16	398	37	435	26	180	17	108.1	12.6
17	436	38	459	24	197	17	120.8	12.7
18	473	37	483	24	214	17	133.6	12.8
19	510	37	505	22	232	18	146.3	12.7
20	547	37	526	21	249	17	158.7	12.4
21	582	35	546	20	266	17	170.9	12.2
22	617	35	565	19	283	17	182.6	11.7
23	650	33	584	19	299	16	193.9	11.3
24	681	31	601	17	315	16	204.7	10.8
25	712	31	618	17	330	15	215.0	10.3
26	741	29	633	15	344	14	224.6	9.6
27	769	28	648	15	359	15	233.7	9.1
28	797	28	661	13	373	14	242.2	8.5
29	825	28	674	13	387	14	250.1	7.9
30	852	27	685	11	400	13	257.5	7.4
31	878	26	696	11	414	14	264.3	6.8
32	903	25	706	10	427	13	270.6	6.3
33	929	26	714	8	440	13	276.3	5.7
34	953	24	722	8	452	12	281.6	5.3
35	978	25	729	7	465	13	286.5	4.9

Understanding species selection returns: Look-up tables vs FMA

Cumulative carbon comparison

The two charts below illustrate the differences between:

- a. the cumulative carbon volumes between the MPI standard lookup tables (yellow line) and the forest; and
- b. specific tables issued by MPI using the FMA data (blue line).

For this reason, we recommend alternative species such as Hardwoods and Softwoods that are better or comparative, to Pinus radiata returns.

Questions/Pātai?

Reach out for a korero:

kiaora@tamata.co.nz

http://www.tamata.co.nz